CHD1L

Protein-coding gene in the species Homo sapiens
CHD1L
Identifiers
AliasesCHD1L, ALC1, CHDL, chromodomain helicase DNA binding protein 1-like, chromodomain helicase DNA binding protein 1 like
External IDsOMIM: 613039; MGI: 1915308; HomoloGene: 11590; GeneCards: CHD1L; OMA:CHD1L - orthologs
Gene location (Human)
Chromosome 1 (human)
Chr.Chromosome 1 (human)[1]
Chromosome 1 (human)
Genomic location for CHD1L
Genomic location for CHD1L
Band1q21.1Start147,242,654 bp[1]
End147,295,765 bp[1]
Gene location (Mouse)
Chromosome 3 (mouse)
Chr.Chromosome 3 (mouse)[2]
Chromosome 3 (mouse)
Genomic location for CHD1L
Genomic location for CHD1L
Band3|3 F2.2Start97,468,058 bp[2]
End97,517,519 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • gonad

  • C1 segment

  • right hemisphere of cerebellum

  • right lobe of liver

  • anterior pituitary

  • ascending aorta

  • mucosa of transverse colon

  • granulocyte

  • spleen

  • Descending thoracic aorta
Top expressed in
  • saccule

  • otic placode

  • transitional epithelium of urinary bladder

  • seminiferous tubule

  • otic vesicle

  • spermatocyte

  • spermatid

  • primitive streak

  • Paneth cell

  • Gonadal ridge
More reference expression data
BioGPS


More reference expression data
Gene ontology
Molecular function
  • nucleotide binding
  • ATPase activity
  • protein binding
  • hydrolase activity
  • ATP binding
  • helicase activity
  • DNA helicase activity
Cellular component
  • plasma membrane
  • nucleus
  • nucleoplasm
  • cytosol
Biological process
  • global genome nucleotide-excision repair
  • nucleotide-excision repair, DNA incision
  • DNA repair
  • cellular response to DNA damage stimulus
  • nucleotide-excision repair, preincision complex stabilization
  • nucleotide-excision repair, preincision complex assembly
  • nucleotide-excision repair, DNA incision, 5'-to lesion
  • chromatin remodeling
  • DNA duplex unwinding
  • nucleotide-excision repair, DNA duplex unwinding
  • nucleotide-excision repair, DNA incision, 3'-to lesion
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

9557

68058

Ensembl

ENSG00000131778

ENSMUSG00000028089

UniProt

Q86WJ1

Q9CXF7

RefSeq (mRNA)
NM_001256336
NM_001256337
NM_001256338
NM_001348451
NM_001348452

NM_001348453
NM_001348454
NM_001348455
NM_001348456
NM_001348457
NM_001348458
NM_001348459
NM_001348460
NM_001348461
NM_001348462
NM_001348463
NM_001348464
NM_001348465
NM_001348466
NM_004284
NM_024568

NM_026539

RefSeq (protein)
NP_001243265
NP_001243266
NP_001243267
NP_004275
NP_078844

NP_001335380
NP_001335381
NP_001335382
NP_001335383
NP_001335384
NP_001335385
NP_001335386
NP_001335387
NP_001335388
NP_001335389
NP_001335390
NP_001335391
NP_001335392
NP_001335393
NP_001335394
NP_001335395

NP_080815

Location (UCSC)Chr 1: 147.24 – 147.3 MbChr 3: 97.47 – 97.52 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Chromodomain-helicase-DNA-binding protein 1-like (ALC1) is an enzyme that in humans is encoded by the CHD1L gene.[5][6] It has been implicated in chromatin remodeling and DNA relaxation process required for DNA replication, repair and transcription. The ALC1 comprises ATPase domain and macro domain. On the basis of homology within the ATPase domain, ALC1 belongs to Snf2 family.[7]

It has 897 amino acids and is approximately 101kDa in size.[8]

Function

In development

CHD1L, a DNA helicase, possesses chromatin remodeling activity and interacts with PARP1/PARylation in regulating pluripotency during developmental reprogramming. The CHD1L macro-domain interacts with the PAR moiety of PARylated-PARP1 to facilitate early-stage reprogramming and pluripotency in stem cells.[9] It appears that CHD1L expression is vital for early events in embryonic development. [10]

In DNA repair

To allow the critical cellular process of DNA repair, the chromatin must be remodeled at sites of damage. CHD1L (ALC1) a chromatin remodeling protein, acts very early in DNA repair. Chromatin relaxation occurs rapidly at the site of a DNA damage.[11] This process is initiated by PARP1 protein that starts to appear at DNA damage in less than a second, with half maximum accumulation within 1.6 seconds after the damage occurs.[12] Next the chromatin remodeler CHD1L (ALC1) quickly attaches to the product of PARP1, and completes arrival at the DNA damage within 10 seconds of the damage.[11] About half of the maximum chromatin relaxation, due to action of CHD1L (ALC1), occurs by 10 seconds.[11] This then allows recruitment of the DNA repair enzyme MRE11, to initiate DNA repair, within 13 seconds.[12] MRE11 is involved in homologous recombinational repair. CHD1L (ALC1) is also required for repair of UV-damaged chromatin through nucleotide excision repair.[13]

Related gene problems

With 1q21.1 deletion syndrome a disturbance occurs, which leads to increased DNA breaks. The role of CHD1L is similar to that of helicase with the Werner syndrome[14]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000131778 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000028089 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Mao M, Fu G, Wu JS, Zhang QH, Zhou J, Kan LX, Huang QH, He KL, Gu BW, Han ZG, Shen Y, Gu J, Yu YP, Xu SH, Wang YX, Chen SJ, Chen Z (July 1998). "Identification of genes expressed in human CD34(+) hematopoietic stem/progenitor cells by expressed sequence tags and efficient full-length cDNA cloning". Proceedings of the National Academy of Sciences of the United States of America. 95 (14): 8175–80. Bibcode:1998PNAS...95.8175M. doi:10.1073/pnas.95.14.8175. PMC 20949. PMID 9653160.
  6. ^ "Entrez Gene: CHD1L chromodomain helicase DNA binding protein 1-like".
  7. ^ Flaus A, Martin DM, Barton GJ, Owen-Hughes T (2006-05-31). "Identification of multiple distinct Snf2 subfamilies with conserved structural motifs". Nucleic Acids Research. 34 (10): 2887–905. doi:10.1093/nar/gkl295. PMC 1474054. PMID 16738128.
  8. ^ "UniProt". UniProt.
  9. ^ Jiang BH, Chen WY, Li HY, Chien Y, Chang WC, Hsieh PC, Wu P, Chen CY, Song HY, Chien CS, Sung YJ, Chiou SH (October 2015). "CHD1L Regulated PARP1-Driven Pluripotency and Chromatin Remodeling During the Early-Stage Cell Reprogramming". Stem Cells. 33 (10): 2961–72. doi:10.1002/stem.2116. PMC 4832376. PMID 26201266.
  10. ^ Snider AC, Leong D, Wang QT, Wysocka J, Yao MW, Scott MP (February 2013). "The chromatin remodeling factor Chd1l is required in the preimplantation embryo". Biology Open. 2 (2): 121–31. doi:10.1242/bio.20122949. PMC 3575647. PMID 23429299.
  11. ^ a b c Sellou H, Lebeaupin T, Chapuis C, Smith R, Hegele A, Singh HR, Kozlowski M, Bultmann S, Ladurner AG, Timinszky G, Huet S (December 2016). "The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage". Molecular Biology of the Cell. 27 (24): 3791–3799. doi:10.1091/mbc.E16-05-0269. PMC 5170603. PMID 27733626.
  12. ^ a b Haince JF, McDonald D, Rodrigue A, Déry U, Masson JY, Hendzel MJ, Poirier GG (January 2008). "PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites". The Journal of Biological Chemistry. 283 (2): 1197–208. doi:10.1074/jbc.M706734200. PMID 18025084.
  13. ^ Pines A, Vrouwe MG, Marteijn JA, Typas D, Luijsterburg MS, Cansoy M, Hensbergen P, Deelder A, de Groot A, Matsumoto S, Sugasawa K, Thoma N, Vermeulen W, Vrieling H, Mullenders L (October 2012). "PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1". The Journal of Cell Biology. 199 (2): 235–49. doi:10.1083/jcb.201112132. PMC 3471223. PMID 23045548.
  14. ^ Harvard C (2011). "Understanding the impact of 1q21.1 copy number variant". Orphanet Journal of Rare Diseases. 6: 54. doi:10.1186/1750-1172-6-54. PMC 3180300. PMID 21824431.

External links

Further reading

  • Matoba R, Okubo K, Hori N, Fukushima A, Matsubara K (September 1994). "The addition of 5'-coding information to a 3'-directed cDNA library improves analysis of gene expression". Gene. 146 (2): 199–207. doi:10.1016/0378-1119(94)90293-3. PMID 8076819.
  • Maruyama K, Sugano S (January 1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
  • Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (October 1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
  • Zhang QH, Ye M, Wu XY, Ren SX, Zhao M, Zhao CJ, Fu G, Shen Y, Fan HY, Lu G, Zhong M, Xu XR, Han ZG, Zhang JW, Tao J, Huang QH, Zhou J, Hu GX, Gu J, Chen SJ, Chen Z (October 2000). "Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells". Genome Research. 10 (10): 1546–60. doi:10.1101/gr.140200. PMC 310934. PMID 11042152.
  • Harrington JJ, Sherf B, Rundlett S, Jackson PD, Perry R, Cain S, Leventhal C, Thornton M, Ramachandran R, Whittington J, Lerner L, Costanzo D, McElligott K, Boozer S, Mays R, Smith E, Veloso N, Klika A, Hess J, Cothren K, Lo K, Offenbacher J, Danzig J, Ducar M (May 2001). "Creation of genome-wide protein expression libraries using random activation of gene expression". Nature Biotechnology. 19 (5): 440–5. doi:10.1038/88107. PMID 11329013. S2CID 25064683.
  • Karras GI, Kustatscher G, Buhecha HR, Allen MD, Pugieux C, Sait F, Bycroft M, Ladurner AG (June 2005). "The macro domain is an ADP-ribose binding module". The EMBO Journal. 24 (11): 1911–20. doi:10.1038/sj.emboj.7600664. PMC 1142602. PMID 15902274.
  • Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T, Sugano S (January 2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes". Genome Research. 16 (1): 55–65. doi:10.1101/gr.4039406. PMC 1356129. PMID 16344560.


  • v
  • t
  • e