Simetria C

Teoria quântica de campos
(Diagramas de Feynman)
Histórica
Pano de fundo
Teoria de gauge
Teoria dos campos
Simetria de Poincaré
Mecânica quântica
Quebra espontânea de simetria
Teoria dos twistores
Simetrias
Crossing
Simetria C
Paridade
Simetria T
Ferramentas
Anomalia
Teoria efetiva dos campos
Matriz CKM
Valor esperado do vácuo
Faddeev–Popov ghosts
Diagramas de Feynman
Fórmula da redução de LSZ
Propagator
Quantização
Renormalização
Vácuo quântico
Teorema de Wick
Axiomas de Wightman
Equações
Equação de Dirac
Equação de Klein–Gordon
Equação de Proca
Equação de Wheeler–DeWitt
Modelo padrão
Força eletrofraca
Mecanismo de Higgs
Cromodinâmica quântica
Eletrodinâmica quântica
Teoria de Yang–Mills
Teorias incompletas
Gravidade quântica
Teoria das cordas
Supersimetria
Technicolor
Teoria do tudo
Cientistas
AdlerBetheBogoliubovCallan • Candlin • ColemanDeWittDiracDysonFermiFeynmanFierzFröhlichGell-MannGoldstoneGross't HooftJackiwKleinLandauLeeLehmannMajoranaNambuParisiPolyakovSalamSchwingerSkyrmeStueckelbergSymanzikTomonagaVeltmanWeinbergWeisskopfWilsonWilczekWittenYangYukawaZimmermannZinn-Justin
Esta caixa:
  • ver
  • discutir
  • editar

Em física, simetria C ou simetria de carga refere-se à simetria das leis da física sob uma conjugação de transformação de cargas. Eletromagnetismo, gravidade e a força nuclear forte obedecem esta simetria, já a força nuclear fraca a viola.

Definição no eletromagnetismo

As leis do eletromagnetismo (tanto para a física clássica quanto para física quântica) são invariantes sob este tipo de transformação simétrica: se cada carga q fosse trocada pela carga -q e as direções dos campos elétrico e magnético fossem revertidas, a dinâmica seria preservada e não haveria pelo comportamentos das partículas constatar qualquer alteração. Pela teoria quântica de campos:

  1. ψ i ( ψ ¯ γ 0 γ 2 ) T {\displaystyle \psi \rightarrow -i({\bar {\psi }}\gamma ^{0}\gamma ^{2})^{T}}
  2. ψ ¯ i ( γ 0 γ 2 ψ ) T {\displaystyle {\bar {\psi }}\rightarrow -i(\gamma ^{0}\gamma ^{2}\psi )^{T}}
  3. A μ A μ {\displaystyle A^{\mu }\rightarrow -A^{\mu }}

Perceba que estas transformações não alteram o chirality da partícula. Um neutrino que tenha spin negativo seria tomado pela simetria-C por um antineutrino com spin idêntico, o qual não interage no modelo padrão. Esta propriedade é o que torna a simetria-C incompatível com a força nuclear fraca.

Há alguns postulados para o modelo padrão que propõem uma simetria esquerda-direita, a qual seria compatível com a força nuclear fraca.[carece de fontes?]

Combinação de carga com reversão de paridade

Durante muito tempo os físicos acreditaram que a simetria-C poderia ser combinada com a transformação de inversão de paridade e formar uma simetria-CP. Entretanto, violações de ambas as simetrias foram identificadas em diversos experimentos físicos na força nuclear fraca (particularmente nas partículas kaons e mesons). Segundo o modelo padrão, esta violação da simetria-CP é devida a uma fase singular na matriz CKM.

Se a simetria-CP for combinada com a reversão da simetria-T o resultado, conhecido por simetria-CPT, pode ser demonstrado utilizando-se os axiomas de Wightman e será obedecido universalmente por todas as leis físicas conhecidas.[1]

Referências

  1. Sozzi, M. S. (2008). Discrete symmetries and CP violation. [S.l.]: Oxford University Press. ISBN 978-0-19-929666-8 
  • Portal da física