Lista över matematiska symboler

Den här artikeln behöver källhänvisningar för att kunna verifieras. (2018-12)
Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan.

Det här är en lista över vanligt förekommande symboler som används i matematiska uttryck. Vilka symboler som används för att representera ett matematiskt koncept kan variera. Så används exempelvis i vissa sammanhang tecknet ≡ snarare än = för att representera likhet. Symbolerna i den här listan är sådana som är i mer allmänt bruk.

Symbol Funktion Utläses Område
+ addition plus aritmetik
4 + 6 = 10 betyder: om 4 adderas till 6 blir summan, eller resultatet, 10.
43 + 65 = 108; 2 + 7 = 9
subtraktion minus aritmetik
9 − 4 = 5 betyder: om 4 dras från 9 så blir resultatet 5. Tecknet − har sammanlagt tre olika betydelser. Som unär operator betecknar den "motsatta talet", och som prefix betecknar den ett negativt tal. Till exempel: 5 + (−3) = 2 betyder att om fem och minus tre adderas blir resultatet två.
36 − 5 = 31 (subtraktion); 4 − (−3) = 7 (negativt tal); −a är ett positivt tal om a < 0 (motsatta talet)
± plus-minus plus eller minus aritmetik
± är en symbol som både betyder + och −, vilket både kan avse positiva/negativa värden respektive addition och subtraktion. Tecknet används bland annat för att beskriva lösningar till ekvationer med två olika lösningar.
x ± 3 = (x + 3) och (x − 3)
minus-plus minus eller plus aritmetik
∓ är en symbol som både betyder − och +, vilket både kan avse negativa/positiva värden respektive subtraktion och addition. Symbolen används framförallt i samband med ±, och avser då att det omvända tecknet mot ± ska användas.
x ± y ∓ 3 = (x + y − 3) och (x − y + 3)

implikation implicerar; om .. så satslogik
AB betyder: om A är sann är B också sann; om A är falsk är ingenting sagt om B.
→ kan betyda samma sak som ⇒, eller den kan syfta på funktioner (se nedan)
x = 2  ⇒  x2 = 4 är sant, men x2 = 4   ⇒  x = 2 är falskt (eftersom x även skulle kunna vara −2)

ekvivalens om och endast om; omm satslogik
A ⇔ B betyder: A är sann om B är sann, och A är falsk om B är falsk.
x + 5 = y + 2  ⇔  x + 3 = y
eftersom ty; därför att; på grund av att satslogik
Sokrates är en man.

Sokrates är dödlig ∵ alla män är dödliga.

xy = 0 ∵ y = 0
alltså alltså; detta betyder att satslogik
Alla män är dödliga och Sokrates är en man.

∴ Sokrates är dödlig.

x + 3 = 4

∴ x = 1

logiskt "och" OCH satslogik
Påståendet AB är sant omm A och B båda är sanna; annars är det falskt.
n < 4  ∧  n > 2  ⇔  n = 3 då n är ett naturligt tal
logiskt "eller" ELLER satslogik
Påståendet AB är sant om A eller B (eller båda) är sanna; om båda är falska är påståendet falskt.
n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 då n är ett naturligt tal
¬
/
logisk negation ICKE satslogik
Påståendet ¬A är sant om A är falskt.
Ett snedstreck genom en annan operator är ekvivalent med ett "¬" framför.
¬(A ∧ B) ⇔ (¬A) ∨ (¬B); x ∉ S  ⇔  ¬(x ∈ S)
; semikolon sådant att överallt
Välj ett xC ; x4 = 1. Då har man fyra olika möjligheter att välja x, nämligen 1, -1, i och -i. Se även ∀ , ∃
allkvantifikator för alla; för vilken som helst; för varje predikatlogik
∀ x: P(x) betyder: P(x) är sann för alla x
∀ n ∈ N: n2 ≥ n
existenskvantifikator det existerar predikatlogik
∃ x; P(x) betyder: det finns åtminstone ett x sådant att P(x) är sant.
∃ n ∈ N; n + 5 = 2n
∃! entydighet Det existerar ett unikt; det existerar ett och endast ett predikatlogik
∃! x; P(x) betyder: det finns exakt ett x sådant att P(x) är sant.
∃! n ∈ N; n + 5 = 2n
= likhetstecken är lika med överallt
x = y betyder: x och y är olika namn på en och samma sak.
1 + 2 = 6 − 3
:=
:⇔
definition definieras som; definieras genom överallt
x := y betyder: x definieras att vara ett annat namn på y
P :⇔ Q betyder: P definieras att vara logiskt ekvivalent med Q
cosh x := (1/2)(exp x + exp (−x)); A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
{ , } mängdklammer mängden ... mängdlära
{a,b,c} betyder: mängden som består av a, b, och c
N = {0,1,2,...}
{ : }
{ | }
mängdbyggarnotation mängden av alla ... sådana att ... mängdlära
{x : P(x)} betyder: mängden av alla x för vilka P(x) är sant. {x | P(x)} är samma sak som {x : P(x)}.
{n ∈ N : n2 < 20} = {0,1,2,3,4}

{}
tomma mängden tomma mängden mängdlära
{} betyder: mängden utan element; ∅ är samma sak
{n ∈ N : 1 < n2 < 4} = {}

tillhör i; finns i; är ett element i; tillhör mängdlära
a ∈ S betyder: a är ett element i mängden S; a ∉ S betyder: a är inte ett element i mängden S
(1/2)−1 ∈ N; 2−1 ∉ N

delmängd är en delmängd av mängdlära
A ⊆ B betyder: varje element i A är också ett element i B
A ⊂ B betyder: A ⊆ B men A ≠ B
A ∩ BA; Q ⊂ R

supermängd är en supermängd till mängdlära
A ⊇ B betyder: A innehåller delmängden B, d.v.s. varje element i B finns också i A
A ⊃ B betyder: A ⊇ B men A ≠ B
 
union unionen av ... och ...; union mängdlära
A ∪ B betyder: mängden som innehåller alla element som finns i A men även alla som finns i B, men inga andra.
A ⊆ B  ⇔  A ∪ B = B
snitt snittet mellan... och ...; snitt mängdlära
A ∩ B betyder: mängden som innehåller alla element som A och B har gemensamt.
{x ∈ R : x2 = 1} ∩ N = {1}
\ mängddifferens minus; utom mängdlära
A \ B betyder: mängden av element som finns i A men inte i B
{1,2,3,4} \ {3,4,5,6} = {1,2}
{\textstyle \complement } komplement komplementet till mängdlära
A {\displaystyle \complement A} betyder: mängden av element som inte tillhör mängden A
( )
[ ]
{ }
funktionsverkan; gruppering av mängdlära
analys
för funktionsverkan: f(x) betyder: värdet av funktionen f som verkar på elementet x
för gruppering: utför operationerna inuti parenteserna först.
Om f(x) := x2f(3) = 32 = 9; (8/4)/2 = 2/2 = 1, men 8/(4/2) = 8/2 = 4
f:XY funktionspil från ... till funktioner
fX → Y betyder: funktionen f avbildar mängden X på mängden Y
Betrakta funktionen fZ → N som definieras genom f(x) = x2
naturliga tal tal
ℕ (alternativt N) betyder: {0, 1, 2, 3, …}
{ |a| : a ∈ ℤ} = ℕ
heltal tal
ℤ (alternativt Z) betyder: {…, −3, −2, −1, 0, 1, 2, 3, …}
{a : |a| ∈ ℕ} = ℤ
rationella tal tal
ℚ (alternativt Q) betyder: {p/q : p,q ∈ ℤ, q ≠ 0}
3.14 ∈ ℚ; π ∉ ℚ
reella tal tal
ℝ (alternativt R) betyder: {limn→∞ an : ∀ n ∈ ℕ: an ∈ ℚ, gränsvärdet existerar}
π ∈ ℝ; √(−1) ∉ ℝ
komplexa tal tal
ℂ (alternativt C) betyder: {a + bi : a,b ∈ ℝ}
i = 1 {\displaystyle {\sqrt {-1}}} ∈ ℂ
<
>
jämförelse är mindre än, är större än partiell ordning
x < y betyder: x är mindre än y; x > y betyder: x är större än y
x < y  ⇔  y > x

jämförelse är mindre än eller lika med, är större än eller lika med partiell ordning
x ≤ y betyder: x är mindre än eller lika med y; x ≥ y betyder: x är större än eller lika med y
x ≥ 1  ⇒  x2 ≥ x
{\displaystyle {\sqrt {\,\,\,}}} kvadratrot kvadratroten ur; kvadratrot reella tal
x {\displaystyle {\sqrt {x}}} betyder: det positiva tal vars kvadrat är x
x 2 = | x | {\displaystyle {\sqrt {x^{2}}}\,=\,|x|}
{\displaystyle \infty } oändlighet oändlighet tal
{\displaystyle \infty } är det element i den utvidgade talaxeln som är större än alla reella tal; det används ofta i gränsvärden
lim x 0 1 | x | = {\displaystyle \lim _{x\to 0}{\frac {1}{|x|}}=\infty }
π pi pi Euklidisk geometri
π {\displaystyle \pi } betyder: kvoten av en cirkels omkrets med dess diameter
A = π r 2 {\displaystyle A=\pi r^{2}} är arean av en cirkel med radien r
! fakultet fakultet kombinatorik
n! är produkten 1·2·...·n
4! = 24 ; 1·2·3·4
| | absolutbelopp absolutbeloppet av; beloppet av tal
|x| betyder: avståndet längs reella axeln (eller i det komplexa planet) mellan x och noll
| a + b i | = a 2 + b 2 {\displaystyle |a+bi|={\sqrt {a^{2}+b^{2}}}}
|| || norm normen av; längden av funktionalanalys
||x|| är normen av elementet x i ett normerat vektorrum
||x+y|| ≤ ||x|| + ||y||
summation summan av ... över ... från ... till ... aritmetik
k = 1 n a k {\displaystyle \sum _{k=1}^{n}a_{k}} betyder: a 1 + a 2 + . . . + a n {\displaystyle a_{1}+a_{2}+...+a_{n}}
k = 1 4 k 2 = 1 2 + 2 2 + 3 2 + 4 2 = 1 + 4 + 9 + 16 = 30 {\displaystyle \sum _{k=1}^{4}k^{2}=1^{2}+2^{2}+3^{2}+4^{2}=1+4+9+16=30} och utläses: summera k kvadrat över alla k från 1 till 4
produkt produkten av ... över ... från ... till ... aritmetik
k = 1 n a k {\displaystyle \prod _{k=1}^{n}a_{k}} betyder: a 1 a 2 . . . a n {\displaystyle a_{1}\cdot a_{2}\cdot ...\cdot a_{n}}
k = 1 4 ( k + 2 ) = ( 1 + 2 ) ( 2 + 2 ) ( 3 + 2 ) ( 4 + 2 ) = 3 4 5 6 = 360 {\displaystyle \prod _{k=1}^{4}(k+2)=(1+2)(2+2)(3+2)(4+2)=3\cdot 4\cdot 5\cdot 6=360}

k = 1 n k = 1 2 3 . . . n = n ! {\displaystyle \prod _{k=1}^{n}k=1\cdot 2\cdot 3\cdot ...\cdot n=n!}

integration integralen från ... till ... av ... med avseende på analys
a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx} betyder: arean mellan x-axeln och grafen av funktionen f från x = a till x = b, där de delar som ligger under x-axeln räknas som negativ area.
0 b x 2 d x = b 3 3 ; a b x 2 d x = b 3 3 a 3 3 {\displaystyle \int _{0}^{b}x^{2}\,dx={\frac {b^{3}}{3}}\,;\,\int _{a}^{b}x^{2}\,dx={\frac {b^{3}}{3}}-{\frac {a^{3}}{3}}}
{\displaystyle \oint \!\,} cirkulationsintegral cirkulationsintegral analys
c f ( x ) d x {\displaystyle \oint _{c}f(x)\,dx} liknande som integral, används för att beteckna en enda integration över en sluten kurva eller loop.
C A d r {\displaystyle \oint _{C}\mathbf {A} \cdot \mathbf {dr} }
f ´ derivering derivatan av f; f prim analys
f ´(x) är derivatan till funktionen f i punkten x, d.v.s. lutningen av tangenten i denna punkt.
Om f(x) = x2, så är  (x) = 2x
f ´´ andraderivata andraderivatan av f; f bis analys
f ´´(x) är andraderivatan till funktionen f i punkten x, d.v.s. derivatan av funktionen (x).
Om f(x) = x4 + x2, så är f ´´(x) = 12x2 + 2
f(n) n-derivata n-derivatan av f; n:te derivatan av f analys
f(n)(x), där n är ett heltal, definieras rekursivt genom att säga att n:te derivatan är derivatan av f(n-1).
Om f(x) = ekx, så är f(n)(x) = knekx
gradient del, nabla, gradienten av analys
f (x1, …, xn) är vektorn som bildas av alla partiella derivator (df / dx1, …, df / dxn)
Om f (x,y,z) = 3xy + z² så är ∇f = (3y, 3x, 2z)

En bild för användning i text är: Bild:Del.svg ().

∇· divergens div, divergensen av analys
Låt v = (v1, ... ,vn) vara en vektor, och varje vi = vi(x1, ..., xn) är en funktion definierad i en given delmängd av Rn. Divergensen av v definieras då som: ∇·v = ∑k=1n dvk/dxk
Om v (x,y,z) = (3xy2, y+z, xz-2y3), så är ∇·v = 3y2 + 1 + x 
∇× rotation rot, rotationen av analys
Låt v = (v1, v2 ,v3) vara en vektor i R3, och varje vi = vi(x,y,z) är en funktion definierad i en given delmängd av R3. Rotationen av v definieras då som:

∇×v = ( dv3/dy - dv2/dz, dv1/dz - dv3/dx, dv2/dx - dv1/dy)

Om v (x,y,z) = (3xy2, y+z, xz-2y2), så är ∇×v = (-4y-1, 0-z, 0-6xy) = (-4y-1,-z,-6xy)
2
Laplaceoperatorn   analys, vektoranalys
2f (x1, …, xn) = ∇·(∇f) = (d2f / dx21 + … + d2f / dx2n)
Om f (x,y,z) = 3sin(xy) + z2; så är ∇2f = -3(y2 + x2)sin(xy)+2


Se även

Den här artikeln ingår i boken: 
Matematik 

Externa länkar

  • Wikimedia Commons har media som rör Lista över matematiska symboler.
    Bilder & media
  • Jeff Miller: Earliest Uses of Various Mathematical Symbols (på engelska)
  • TCAEP (The Constants and Equations Pages) - Institute of Physics (på engelska)