GATA3

Protein-coding gene in the species Homo sapiens
GATA3
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

4HC7, 4HC9, 4HCA

Identifiers
AliasesGATA3, HDR, HDRS, GATA binding protein 3
External IDsOMIM: 131320; MGI: 95663; HomoloGene: 1550; GeneCards: GATA3; OMA:GATA3 - orthologs
Gene location (Human)
Chromosome 10 (human)
Chr.Chromosome 10 (human)[1]
Chromosome 10 (human)
Genomic location for GATA3
Genomic location for GATA3
Band10p14Start8,045,378 bp[1]
End8,075,198 bp[1]
Gene location (Mouse)
Chromosome 2 (mouse)
Chr.Chromosome 2 (mouse)[2]
Chromosome 2 (mouse)
Genomic location for GATA3
Genomic location for GATA3
Band2 A1|2 6.69 cMStart9,861,889 bp[2]
End9,894,845 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • nipple

  • lactiferous duct

  • renal medulla

  • seminal vesicula

  • skin of abdomen

  • vulva

  • corpus epididymis

  • placenta

  • hair follicle

  • mucosa of urinary bladder
Top expressed in
  • hair follicle

  • medullary collecting duct

  • seminal vesicula

  • adrenal medulla

  • skin of back

  • nasal cavity

  • lip

  • urethra

  • female urethra

  • skin of abdomen
More reference expression data
BioGPS




More reference expression data
Gene ontology
Molecular function
  • RNA polymerase II transcription regulatory region sequence-specific DNA binding
  • HMG box domain binding
  • chromatin binding
  • metal ion binding
  • DNA binding
  • cis-regulatory region sequence-specific DNA binding
  • sequence-specific DNA binding
  • DNA-binding transcription activator activity, RNA polymerase II-specific
  • DNA-binding transcription repressor activity, RNA polymerase II-specific
  • interleukin-2 receptor binding
  • core promoter sequence-specific DNA binding
  • transcription cis-regulatory region binding
  • protein dimerization activity
  • E-box binding
  • protein binding
  • zinc ion binding
  • transcription factor binding
  • transcription coactivator activity
  • RNA polymerase II cis-regulatory region sequence-specific DNA binding
  • DNA-binding transcription factor activity
  • DNA-binding transcription factor activity, RNA polymerase II-specific
  • transcription coregulator activity
Cellular component
  • nucleus
  • transcription regulator complex
  • nucleoplasm
Biological process
  • negative regulation of cell population proliferation
  • regulation of establishment of cell polarity
  • ureteric bud formation
  • negative regulation of cell cycle
  • thymic T cell selection
  • response to ethanol
  • positive regulation of T cell differentiation
  • erythrocyte differentiation
  • inner ear morphogenesis
  • cell maturation
  • regulation of histone H3-K27 methylation
  • cardiac right ventricle morphogenesis
  • phosphatidylinositol 3-kinase signaling
  • norepinephrine biosynthetic process
  • ear development
  • homeostasis of number of cells
  • sympathetic nervous system development
  • T-helper 2 cell differentiation
  • regulation of cellular response to X-ray
  • cell fate determination
  • post-embryonic development
  • cellular response to BMP stimulus
  • mesonephros development
  • neuron differentiation
  • regulation of neuron apoptotic process
  • signal transduction
  • cellular response to cytokine stimulus
  • cellular response to interleukin-4
  • T cell receptor signaling pathway
  • neuron migration
  • positive regulation of interleukin-5 production
  • regulation of CD4-positive, alpha-beta T cell differentiation
  • parathyroid gland development
  • negative regulation of DNA demethylation
  • positive regulation of interleukin-4 production
  • negative regulation of mammary gland epithelial cell proliferation
  • regulation of transcription by RNA polymerase II
  • thymus development
  • nervous system development
  • otic vesicle development
  • regulation of transcription, DNA-templated
  • positive regulation of T-helper 2 cell cytokine production
  • regulation of nephron tubule epithelial cell differentiation
  • positive regulation of thyroid hormone generation
  • lymphocyte migration
  • negative regulation of interleukin-2 production
  • regulation of neuron projection development
  • uterus development
  • axon guidance
  • mesenchymal to epithelial transition
  • negative regulation of cell proliferation involved in mesonephros development
  • aortic valve morphogenesis
  • cellular response to tumor necrosis factor
  • negative regulation of fat cell differentiation
  • anatomical structure morphogenesis
  • cellular response to interferon-alpha
  • negative regulation of transcription, DNA-templated
  • T cell differentiation
  • response to virus
  • negative regulation of endothelial cell apoptotic process
  • innate immune response
  • canonical Wnt signaling pathway involved in metanephric kidney development
  • positive regulation of transcription regulatory region DNA binding
  • positive regulation of endothelial cell migration
  • positive regulation of interleukin-13 production
  • in utero embryonic development
  • negative regulation of interferon-gamma production
  • humoral immune response
  • developmental growth
  • kidney development
  • positive regulation of ureteric bud formation
  • positive regulation of gene expression
  • mast cell differentiation
  • positive regulation of histone H3-K9 acetylation
  • positive regulation of cell differentiation
  • negative regulation of transcription by RNA polymerase II
  • male gonad development
  • nephric duct morphogenesis
  • ventricular septum development
  • positive regulation of cytokine production
  • lens development in camera-type eye
  • negative regulation of fibroblast growth factor receptor signaling pathway involved in ureteric bud formation
  • transcription, DNA-templated
  • negative regulation of gene expression
  • parathyroid hormone secretion
  • nephric duct formation
  • immune system process
  • negative regulation of inflammatory response
  • pharyngeal system development
  • embryonic organ development
  • response to estrogen
  • blood coagulation
  • negative regulation of glial cell-derived neurotrophic factor receptor signaling pathway involved in ureteric bud formation
  • positive regulation of signal transduction
  • ureter maturation
  • positive regulation of histone H3-K14 acetylation
  • positive regulation of transcription, DNA-templated
  • response to gamma radiation
  • cell morphogenesis
  • embryonic hemopoiesis
  • positive regulation of transcription by RNA polymerase II
  • negative regulation of cell motility
  • pro-T cell differentiation
  • TOR signaling
  • type IV hypersensitivity
  • defense response
  • regulation of histone H3-K4 methylation
  • renal system development
  • positive regulation of protein kinase B signaling
  • cell activation
  • chromatin remodeling
  • T cell differentiation in thymus
  • cochlea development
  • transcription by RNA polymerase II
  • protein deubiquitination
  • anatomical structure formation involved in morphogenesis
  • regulation of hematopoietic stem cell differentiation
  • cytokine-mediated signaling pathway
  • heart development
  • animal organ morphogenesis
  • tissue development
  • cell development
  • digestive tract development
  • immune system development
  • regulation of epithelial cell differentiation
  • ureter morphogenesis
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

2625

14462

Ensembl

ENSG00000107485

ENSMUSG00000015619

UniProt

P23771

P23772

RefSeq (mRNA)

NM_001002295
NM_002051

NM_008091
NM_001355110
NM_001355111
NM_001355112

RefSeq (protein)

NP_001002295
NP_002042

NP_032117
NP_001342039
NP_001342040
NP_001342041

Location (UCSC)Chr 10: 8.05 – 8.08 MbChr 2: 9.86 – 9.89 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

GATA3 is a transcription factor that in humans is encoded by the GATA3 gene. Studies in animal models and humans indicate that it controls the expression of a wide range of biologically and clinically important genes.[5][6][7]

The GATA3 transcription factor is critical for the embryonic development of various tissues as well as for inflammatory and humoral immune responses and the proper functioning of the endothelium of blood vessels. GATA3 plays central role in allergy and immunity against worm infections.[8][9] GATA3 haploinsufficiency (i.e. loss of one or the two inherited GATA3 genes) results in a congenital disorder termed the Barakat syndrome.[10][11][12]

Current clinical and laboratory research is focusing on determining the benefits of directly or indirectly blocking the action of GATA3 in inflammatory and allergic diseases such as asthma.[10] It is also proposed to be a clinically important marker for various types of cancer, particularly those of the breast. However, the role, if any, of GATA3 in the development of these cancers is under study and remains unclear.[13]

Gene

The GATA3 gene is located close to the end of the short arm of chromosome 10 at position p14. It consists of 8 exons, and codes for two variants viz., GATA3, variant 1, and GATA3, variant 2.[14] Expression of GATA3 may be regulated in part or at times by the antisense RNA, GATA3-AS1, whose gene is located close to the GATA3 gene on the short arm of chromosome 10 at position p14.[15] Various types of mutations including point mutations as well as small- and large-scale deletional mutations cause an autosomal dominant genetic disorder, the Barakat syndrome (also termed hypoparathyroidism, deafness, and renal dysplasia syndrome). The location of GATA3 borders that of other critical sites on chromosome 10, particularly a site located at 10p14-p13. Mutations in this site cause the congenital disorder DiGeorge syndrome/velocardiofacial syndrome complex 2 (or DiGeorge syndrome 2).[16] Large-scale deletions in GATA3 may span into the DiGeorge syndrome 2 area and thereby cause a complex syndrome with features of the Barakat syndrome combined with some of those of the DiGeorge syndrome 2.[12][17] Knockout of both GATA3 genes in mice is fatal: these animals die at embryonic days 11 and 12 due to internal bleeding. They also exhibit gross deformities in the brain and spine as well as aberrations in fetal liver hematopoiesis.[18]

Protein

GATA3 variant 1 is a linear protein consisting of 444 amino acids. GATA3 variant 2 protein is an identically structured isoform of, but 1 amino acid shorter than, GATA3 variant 1. Differences, if any, in the functions of these two variants have not been reported.[19] With respect to the best studied variant, variant 1, but presumably also variant 2, one of the zinc finger structural motifs, ZNF2, is located at the protein's C-terminus and binds to specific gene promoter DNA sequences to regulate the expression of the genes controlled by these promoters. The other zinc finger, ZNF1, is at the protein's N-terminus and interacts with various nuclear factors, including Zinc finger protein 1 (i.e. ZFPM1, also termed Friends of GATA1 [i.e. FOG-1]) and ZFPM2 (i.e. FOG-2), that modulate GATA3's gene-stimulating actions.[20]

Pathophysiology

The GATA3 transcription factor regulates the expression of genes involved in the development of various tissues as well as genes involved in physiological as well as pathological humoral inflammatory and allergic responses.[12][10]

Function

GATA3 belongs to the GATA family of transcription factors. Gene-deletion studies in mice indicate that Gata3 (mouse gene equivalent to GATA3) is critical for the embryonic development and/or function of various cell types (e.g. fat cells, neural crest cells, lymphocytes) and tissues (e.g. kidney, liver, brain, spinal cord, mammary gland).[11] Studies in humans implicate GATA3 in the following:

  • 1) GATA3 is required for the development of the parathyroid gland, sensory components of the auditory system, and the kidney in animals and humans.[12] It may also contribute to the development of the vagina and uterus in humans.[21]
  • 2) In humans, GATA3 is required for the development and/or function of innate lymphoid cells (ILCs), particularly Group 2 ILCs as well as for the development of T helper cells,(Th cells), particularly Th2 cells. Group 2 ILCs and Th2 cells, and thereby GATA3, are critical for the development of allergic and humoral immune responses in humans. Comparable studies in animals implicate GATA3 in the development of lymphocytes that mediate allergic and humoral immunity as well as allergic and humoral immune responses.[22][21]
  • 3) GATA3 promotes the secretion of IL-4, IL-5, and IL-13 from Th2 cells in humans and has similar actions on comparable mouse lymphocytes. All three of these interleukins serve to promote allergic responses,[23]
  • 4) GATA3 induces the maturation of precursor cells into breast epithelial cells and maintains these cells in their mature state in mice and possibly humans.[24][25]
  • 5) In mice, GATA3 is responsible for the normal development of various tissues including the skin, fat cells, the thymus, and the nervous system.[26][21]

Clinical significance

Mutations

Inactivating mutations in one of the two parental GATA3 genes cause the congenital disorder of hypoparathyroidism with sensorineural deafness and kidney malformations, i.e. the Barakat syndrome. This rare syndrome may occur in families or as a new mutation in an individual from a family with no history of the disorder. Mutations in GATA3 cause variable degrees of hypoparathyroidism, deafness, and kidney disease birth defects because of 1) individual differences in the penetrance of the mutation, 2) a sporadic, and as yet unexplained, association with malformation of uterus and vagina, and 3) mutations which extend beyond the GATA3 gene into chromosomal areas where mutations are responsible for developing other types of abnormalities which are characteristics of the DeGeorge syndrome 2. The Barakat syndrome is due to a haploinsufficiency in GATA3 levels, i.e. levels of the transcription factor that are insufficient for the normal development of the cited tissues during embryogenesis.[11][12][17]

Allergy

Mouse studies indicate that inhibiting the expression of GATA3 using antisense RNA methods suppresses allergic inflammation. The protein is overexpressed in the afflicted tissues of individuals with various forms of allergy including asthma, rhinitis, nasal polyps, and atopic eczema. This suggests that it may have a role in promoting these disorders.[27] In a phase IIA clinical study of individuals suffering allergen-induced asthma, inhalation of Deoxyribozyme ST010, which specifically inactivates GATA3 messenger RNA, for 28 days reduced early and late immune lung responses to inhaled allergen. The clinical benefit of inhibiting GATA3 in this disorder is thought to be due to interfering with the function of Group 2 ILCs and Th2 cells by, for example, reducing their production of IL-4, IL-13, and especially IL-5. Reduction in these eosinophil-stimulating interleukins, it is postulated, reduces this cells ability to promote allergic reactivity and responses.[10][28] For similar reasons, this treatment might also prove to be clinical useful for treating other allergic disorders.[27]

Tumors

Breast tumors

Development

GATA3 is one of the three genes mutated in >10% of breast cancers (Cancer Genome Atlas).[29] Studies in mice indicate that the gene is critical for the normal development of breast tissue and directly regulates luminal cell (i.e. cells lining mammary ducts) differentiation in experimentally induced breast cancer.[18][30] Analytic studies of human breast cancer tissues suggest that GATA3 is required for specific type of low risk breast cancer (i.e. luminal A), is integral to the expression of estrogen receptor alpha, and (in estrogen receptor negative/androgen receptor positive cancers) androgen receptor signaling.[31][32][33] These studies suggest that GATA3 is involved in the development of at least certain types of breast cancer in humans. However, there is disagreement on this, with some studies suggesting that the expression of the GATA3 acts to inhibit and other studies suggesting that it acts to promote the development, growth, and/or spread of this cancer. Further studies are needed to elucidate the role, if any, of GATA3 in the development of breast cancer.[18]

Marker

Immuocytochemical analysis of GATA3 protein in breast cells is a valuable marker for diagnosing primary breast cancer, being tested as positive in up to 94% of cases. It is especially valuable for estrogen receptor positive breast cancers but is less sensitive (435-66% elevated), although still more valuable than many other markers, for diagnosing triple-negative breast cancers. This analysis is widely used as a clinically valuable marker for breast cancer.[34][35]

Other tumor types

Similar to breast tumors, the role of GATA3 in the genesis of other tumor types is unclear but detection of its transcription factor product may be diagnostically useful. Immuocytochemical analysis of GATA3 protein is considered a valuable marker for certain types of urinary bladder and urethral cancers as well as for parathyroid gland tumors (cancerous or benign), Single series reports suggest that this analysis might also be of value for diagnosing salivary gland tumors, salivary duct carcinomas, mammary analog secretory carcinomas, benign ovarian Brenner tumors, benign Walthard cell rests, and paragangliomas.[36][13]

Interactions

GATA3 has been shown to interact with the following transcription factor regulators: ZFPM1 and ZFPM2;[20] LMO1;[37][38] and FOXA1.[39] These regulators may promote or inhibit GATA3 in stimulating the expression of its target genes.

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000107485 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000015619 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Joulin V, Bories D, Eléouet JF, Labastie MC, Chrétien S, Mattéi MG, Roméo PH (Jul 1991). "A T-cell specific TCR delta DNA binding protein is a member of the human GATA family". The EMBO Journal. 10 (7): 1809–16. doi:10.1002/j.1460-2075.1991.tb07706.x. PMC 452855. PMID 2050118.
  6. ^ Yamashita M, Ukai-Tadenuma M, Miyamoto T, Sugaya K, Hosokawa H, Hasegawa A, Kimura M, Taniguchi M, DeGregori J, Nakayama T (Jun 2004). "Essential role of GATA3 for the maintenance of type 2 helper T (Th2) cytokine production and chromatin remodeling at the Th2 cytokine gene loci". The Journal of Biological Chemistry. 279 (26): 26983–90. doi:10.1074/jbc.M403688200. PMID 15087456.
  7. ^ "Entrez Gene: GATA3 GATA binding protein 3".
  8. ^ Zheng Wp, Flavell RA (May 1997). "The Transcription Factor GATA-3 Is Necessary and Sufficient for Th2 Cytokine Gene Expression in CD4 T Cells". Cell. 89 (4): 587–596. doi:10.1016/s0092-8674(00)80240-8. PMID 9160750. S2CID 18342599.
  9. ^ Zheng WP, Flavell RA (1 June 2016). "Pillars Article: The Transcription Factor GATA-3 Is Necessary and Sufficient for Th2 Cytokine Gene Expression in CD4 T Cells. Cell. 1997. 89: 587-596". Journal of Immunology. 196 (11): 4426–35. PMID 27207805.
  10. ^ a b c d Barnes PJ (April 2018). "Targeting cytokines to treat asthma and chronic obstructive pulmonary disease". Nature Reviews. Immunology. 18 (7): 454–466. doi:10.1038/s41577-018-0006-6. PMID 29626211. S2CID 4647119.
  11. ^ a b c "OMIM Entry - * 131320 - GATA-BINDING PROTEIN 3; GATA3". omim.org.
  12. ^ a b c d e Belge H, Dahan K, Cambier JF, Benoit V, Morelle J, Bloch J, Vanhille P, Pirson Y, Demoulin N (May 2017). "Clinical and mutational spectrum of hypoparathyroidism, deafness and renal dysplasia syndrome". Nephrology, Dialysis, Transplantation. 32 (5): 830–837. doi:10.1093/ndt/gfw271. PMID 27387476.
  13. ^ a b Ordóñez NG (September 2013). "Value of GATA3 immunostaining in tumor diagnosis: a review". Advances in Anatomic Pathology. 20 (5): 352–60. doi:10.1097/PAP.0b013e3182a28a68. PMID 23939152. S2CID 8874053.
  14. ^ "Homo sapiens GATA binding protein 3 (GATA3), RefSeqGene on chromosome - Nucleotide - NCBI". www.ncbi.nlm.nih.gov. 2019-05-21.
  15. ^ "GATA3-AS1 GATA3 antisense RNA 1 [Homo sapiens (human)] - Gene - NCBI".
  16. ^ "DiGeorge syndrome/velocardiofacial syndrome complex 2 - Conditions - GTR - NCBI". www.ncbi.nlm.nih.gov.
  17. ^ a b Lindstrand A, Malmgren H, Verri A, Benetti E, Eriksson M, Nordgren A, Anderlid BM, Golovleva I, Schoumans J, Blennow E (May 2010). "Molecular and clinical characterization of patients with overlapping 10p deletions". American Journal of Medical Genetics. Part A. 152A (5): 1233–43. doi:10.1002/ajmg.a.33366. PMID 20425828. S2CID 22213304.
  18. ^ a b c Du F, Yuan P, Wang T, Zhao J, Zhao Z, Luo Y, Xu B (November 2015). "The Significance and Therapeutic Potential of GATA3 Expression and Mutation in Breast Cancer: A Systematic Review". Medicinal Research Reviews. 35 (6): 1300–15. doi:10.1002/med.21362. PMID 26313026. S2CID 11668034.
  19. ^ "Homo sapiens GATA binding protein 3 (GATA3), transcript variant 2, mRN - Nucleotide - NCBI". www.ncbi.nlm.nih.gov. 2019-05-19.
  20. ^ a b "trans-acting T-cell-specific transcription factor GATA-3 isoform 1 [Ho - Protein - NCBI". www.ncbi.nlm.nih.gov.
  21. ^ a b c "OMIM Entry - * 131320 - GATA-BINDING PROTEIN 3; GATA3".
  22. ^ Zhu J (2017). "GATA3 Regulates the Development and Functions of Innate Lymphoid Cell Subsets at Multiple Stages". Frontiers in Immunology. 8: 1571. doi:10.3389/fimmu.2017.01571. PMC 5694433. PMID 29184556.
  23. ^ Yagi R, Zhu J, Paul WE (Jul 2011). "An updated view on transcription factor GATA3-mediated regulation of Th1 and Th2 cell differentiation Z". International Immunology. 23 (7): 415–20. doi:10.1093/intimm/dxr029. PMC 3123974. PMID 21632975.
  24. ^ Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z (Dec 2006). "GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland". Cell. 127 (5): 1041–55. doi:10.1016/j.cell.2006.09.048. PMC 2646406. PMID 17129787.
  25. ^ Asch-Kendrick R, Cimino-Mathews A (February 2016). "The role of GATA3 in breast carcinomas: a review". Human Pathology. 48: 37–47. doi:10.1016/j.humpath.2015.09.035. PMID 26772397.
  26. ^ Ho IC, Pai SY (February 2007). "GATA-3 - not just for Th2 cells anymore". Cellular & Molecular Immunology. 4 (1): 15–29. PMID 17349208.
  27. ^ a b Bachert C, Zhang L, Gevaert P (December 2015). "Current and future treatment options for adult chronic rhinosinusitis: Focus on nasal polyposis". The Journal of Allergy and Clinical Immunology. 136 (6): 1431–1440. doi:10.1016/j.jaci.2015.10.010. PMID 26654192.
  28. ^ Garn H, Renz H (January 2017). "GATA-3-specific DNAzyme - A novel approach for stratified asthma therapy". European Journal of Immunology. 47 (1): 22–30. doi:10.1002/eji.201646450. PMID 27910098.
  29. ^ Koboldt DC, Fulton RS, McLellan MD (Oct 2012). "Comprehensive molecular portraits of human breast tumours". Nature. 490 (7418): 61–70. Bibcode:2012Natur.490...61T. doi:10.1038/nature11412. PMC 3465532. PMID 23000897.
  30. ^ Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M, Ewald AJ, Pai SY, Ho IC, Werb Z (Feb 2008). "GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model". Cancer Cell. 13 (2): 141–52. doi:10.1016/j.ccr.2008.01.011. PMC 2262951. PMID 18242514.
  31. ^ Wilson BJ, Giguère V (2008). "Meta-analysis of human cancer microarrays reveals GATA3 is integral to the estrogen receptor alpha pathway". Molecular Cancer. 7: 49. doi:10.1186/1476-4598-7-49. PMC 2430971. PMID 18533032.
  32. ^ Dydensborg AB, Rose AA, Wilson BJ, Grote D, Paquet M, Giguère V, Siegel PM, Bouchard M (Jul 2009). "GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis". Oncogene. 28 (29): 2634–42. doi:10.1038/onc.2009.126. PMID 19483726. S2CID 2923763.
  33. ^ Sanga S, Broom BM, Cristini V, Edgerton ME (2009). "Gene expression meta-analysis supports existence of molecular apocrine breast cancer with a role for androgen receptor and implies interactions with ErbB family". BMC Medical Genomics. 2: 59. doi:10.1186/1755-8794-2-59. PMC 2753593. PMID 19747394.
  34. ^ Liu H, Shi J, Wilkerson ML, Lin F (July 2012). "Immunohistochemical evaluation of GATA3 expression in tumors and normal tissues: a useful immunomarker for breast and urothelial carcinomas". American Journal of Clinical Pathology. 138 (1): 57–64. doi:10.1309/AJCP5UAFMSA9ZQBZ. PMID 22706858.
  35. ^ Peng Y, Butt YM, Chen B, Zhang X, Tang P (August 2017). "Update on Immunohistochemical Analysis in Breast Lesions". Archives of Pathology & Laboratory Medicine. 141 (8): 1033–1051. doi:10.5858/arpa.2016-0482-RA. PMID 28574279.
  36. ^ Inamura K (April 2018). "Bladder Cancer: New Insights into Its Molecular Pathology". Cancers. 10 (4): 100. doi:10.3390/cancers10040100. PMC 5923355. PMID 29614760.
  37. ^ Ono Y, Fukuhara N, Yoshie O (Dec 1998). "TAL1 and LIM-only proteins synergistically induce retinaldehyde dehydrogenase 2 expression in T-cell acute lymphoblastic leukemia by acting as cofactors for GATA3". Molecular and Cellular Biology. 18 (12): 6939–50. doi:10.1128/MCB.18.12.6939. PMC 109277. PMID 9819382.
  38. ^ Ono Y, Fukuhara N, Yoshie O (Feb 1997). "Transcriptional activity of TAL1 in T cell acute lymphoblastic leukemia (T-ALL) requires RBTN1 or -2 and induces TALLA1, a highly specific tumor marker of T-ALL". The Journal of Biological Chemistry. 272 (7): 4576–81. doi:10.1074/jbc.272.7.4576. PMID 9020185.
  39. ^ Albergaria A, Paredes J, Sousa B, Milanezi F, Carneiro V, Bastos J, Costa S, Vieira D, Lopes N, Lam EW, Lunet N, Schmitt F (2009). "Expression of FOXA1 and GATA-3 in breast cancer: the prognostic significance in hormone receptor-negative tumours". Breast Cancer Research. 11 (3): R40. doi:10.1186/bcr2327. PMC 2716509. PMID 19549328.
Attribution

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


Further reading

  • Naylor MJ, Ormandy CJ (2007). "Gata-3 and mammary cell fate". Breast Cancer Research. 9 (2): 302. doi:10.1186/bcr1661. PMC 1868924. PMID 17381824.
  • Ho IC, Vorhees P, Marin N, Oakley BK, Tsai SF, Orkin SH, Leiden JM (May 1991). "Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene". The EMBO Journal. 10 (5): 1187–92. doi:10.1002/j.1460-2075.1991.tb08059.x. PMC 452772. PMID 1827068.
  • Marine J, Winoto A (Aug 1991). "The human enhancer-binding protein Gata3 binds to several T-cell receptor regulatory elements". Proceedings of the National Academy of Sciences of the United States of America. 88 (16): 7284–8. Bibcode:1991PNAS...88.7284M. doi:10.1073/pnas.88.16.7284. PMC 52279. PMID 1871134.
  • Ko LJ, Yamamoto M, Leonard MW, George KM, Ting P, Engel JD (May 1991). "Murine and human T-lymphocyte GATA-3 factors mediate transcription through a cis-regulatory element within the human T-cell receptor delta gene enhancer". Molecular and Cellular Biology. 11 (5): 2778–84. doi:10.1128/mcb.11.5.2778. PMC 360054. PMID 2017177.
  • Siegel MD, Zhang DH, Ray P, Ray A (Oct 1995). "Activation of the interleukin-5 promoter by cAMP in murine EL-4 cells requires the GATA-3 and CLE0 elements". The Journal of Biological Chemistry. 270 (41): 24548–55. doi:10.1074/jbc.270.41.24548. PMID 7592673.
  • Labastie MC, Bories D, Chabret C, Grégoire JM, Chrétien S, Roméo PH (May 1994). "Structure and expression of the human GATA3 gene". Genomics. 21 (1): 1–6. doi:10.1006/geno.1994.1217. PMID 8088776.
  • Ono Y, Fukuhara N, Yoshie O (Feb 1997). "Transcriptional activity of TAL1 in T cell acute lymphoblastic leukemia (T-ALL) requires RBTN1 or -2 and induces TALLA1, a highly specific tumor marker of T-ALL". The Journal of Biological Chemistry. 272 (7): 4576–81. doi:10.1074/jbc.272.7.4576. PMID 9020185.
  • Ono Y, Fukuhara N, Yoshie O (Dec 1998). "TAL1 and LIM-only proteins synergistically induce retinaldehyde dehydrogenase 2 expression in T-cell acute lymphoblastic leukemia by acting as cofactors for GATA3". Molecular and Cellular Biology. 18 (12): 6939–50. doi:10.1128/MCB.18.12.6939. PMC 109277. PMID 9819382.
  • Yang GP, Ross DT, Kuang WW, Brown PO, Weigel RJ (Mar 1999). "Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes". Nucleic Acids Research. 27 (6): 1517–23. doi:10.1093/nar/27.6.1517. PMC 148347. PMID 10037815.
  • Blumenthal SG, Aichele G, Wirth T, Czernilofsky AP, Nordheim A, Dittmer J (Apr 1999). "Regulation of the human interleukin-5 promoter by Ets transcription factors. Ets1 and Ets2, but not Elf-1, cooperate with GATA3 and HTLV-I Tax1". The Journal of Biological Chemistry. 274 (18): 12910–6. doi:10.1074/jbc.274.18.12910. PMID 10212281.
  • Van Esch H, Groenen P, Nesbit MA, Schuffenhauer S, Lichtner P, Vanderlinden G, Harding B, Beetz R, Bilous RW, Holdaway I, Shaw NJ, Fryns JP, Van de Ven W, Thakker RV, Devriendt K (Jul 2000). "GATA3 haplo-insufficiency causes human HDR syndrome". Nature. 406 (6794): 419–22. Bibcode:2000Natur.406..419V. doi:10.1038/35019088. PMID 10935639. S2CID 4327212.
  • Hartley JL, Temple GF, Brasch MA (Nov 2000). "DNA cloning using in vitro site-specific recombination". Genome Research. 10 (11): 1788–95. doi:10.1101/gr.143000. PMC 310948. PMID 11076863.
  • Muroya K, Hasegawa T, Ito Y, Nagai T, Isotani H, Iwata Y, Yamamoto K, Fujimoto S, Seishu S, Fukushima Y, Hasegawa Y, Ogata T (Jun 2001). "GATA3 abnormalities and the phenotypic spectrum of HDR syndrome". Journal of Medical Genetics. 38 (6): 374–80. doi:10.1136/jmg.38.6.374. PMC 1734904. PMID 11389161.
  • Crawford SE, Qi C, Misra P, Stellmach V, Rao MS, Engel JD, Zhu Y, Reddy JK (Feb 2002). "Defects of the heart, eye, and megakaryocytes in peroxisome proliferator activator receptor-binding protein (PBP) null embryos implicate GATA family of transcription factors". The Journal of Biological Chemistry. 277 (5): 3585–92. doi:10.1074/jbc.M107995200. PMID 11724781.
  • Kieffer LJ, Greally JM, Landres I, Nag S, Nakajima Y, Kohwi-Shigematsu T, Kavathas PB (Apr 2002). "Identification of a candidate regulatory region in the human CD8 gene complex by colocalization of DNase I hypersensitive sites and matrix attachment regions which bind SATB1 and GATA-3". Journal of Immunology. 168 (8): 3915–22. doi:10.4049/jimmunol.168.8.3915. PMID 11937547.
  • Asnagli H, Afkarian M, Murphy KM (May 2002). "Cutting edge: Identification of an alternative GATA-3 promoter directing tissue-specific gene expression in mouse and human". Journal of Immunology. 168 (9): 4268–71. doi:10.4049/jimmunol.168.9.4268. PMID 11970965.
  • Steenbergen RD, OudeEngberink VE, Kramer D, Schrijnemakers HF, Verheijen RH, Meijer CJ, Snijders PJ (Jun 2002). "Down-regulation of GATA-3 expression during human papillomavirus-mediated immortalization and cervical carcinogenesis". The American Journal of Pathology. 160 (6): 1945–51. doi:10.1016/S0002-9440(10)61143-1. PMC 1850837. PMID 12057898.
  • Höfer T, Nathansen H, Löhning M, Radbruch A, Heinrich R (Jul 2002). "GATA-3 transcriptional imprinting in Th2 lymphocytes: a mathematical model". Proceedings of the National Academy of Sciences of the United States of America. 99 (14): 9364–8. Bibcode:2002PNAS...99.9364H. doi:10.1073/pnas.142284699. PMC 123146. PMID 12087127.
  • Karunaratne A, Hargrave M, Poh A, Yamada T (Sep 2002). "GATA proteins identify a novel ventral interneuron subclass in the developing chick spinal cord". Developmental Biology. 249 (1): 30–43. doi:10.1006/dbio.2002.0754. PMID 12217316.

External links

  • v
  • t
  • e
(1) Basic domains
(1.1) Basic leucine zipper (bZIP)
(1.2) Basic helix-loop-helix (bHLH)
Group A
Group B
Group C
bHLH-PAS
Group D
Group E
Group F
bHLH-COE
(1.3) bHLH-ZIP
(1.4) NF-1
(1.5) RF-X
(1.6) Basic helix-span-helix (bHSH)
(2) Zinc finger DNA-binding domains
(2.1) Nuclear receptor (Cys4)
subfamily 1
subfamily 2
subfamily 3
subfamily 4
subfamily 5
subfamily 6
subfamily 0
(2.2) Other Cys4
(2.3) Cys2His2
(2.4) Cys6
(2.5) Alternating composition
(2.6) WRKY
(3) Helix-turn-helix domains
(3.1) Homeodomain
Antennapedia
ANTP class
protoHOX
Hox-like
metaHOX
NK-like
other
(3.2) Paired box
(3.3) Fork head / winged helix
(3.4) Heat shock factors
(3.5) Tryptophan clusters
(3.6) TEA domain
  • transcriptional enhancer factor
(4) β-Scaffold factors with minor groove contacts
(4.1) Rel homology region
(4.2) STAT
(4.3) p53-like
(4.4) MADS box
(4.6) TATA-binding proteins
(4.7) High-mobility group
(4.9) Grainyhead
(4.10) Cold-shock domain
(4.11) Runt
(0) Other transcription factors
(0.2) HMGI(Y)
(0.3) Pocket domain
(0.5) AP-2/EREBP-related factors
(0.6) Miscellaneous
see also transcription factor/coregulator deficiencies